Cover Pebbling Numbers and Bounds for Certain Families of Graphs
نویسندگان
چکیده
Given a configuration of pebbles on the vertices of a graph, a pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. The cover pebbling number of a graph, γ(G), is the smallest number of pebbles such that through a sequence of pebbling moves, a pebble can eventually be placed on every vertex simultaneously, no matter how the pebbles are initially distributed. The cover pebbling number for complete multipartite graphs and wheel graphs is determined. We also prove a sharp bound for γ(G) given the diameter and number of vertices of G. 1
منابع مشابه
Pebbling Numbers and Bounds for Certain Families of Graphs
Given a configuration of pebbles on the vertices of a graph, a pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. The cover pebbling number of a graph, γ(G), is the smallest number of pebbles such that through a sequence of pebbling moves, a pebble can eventually be placed on every vertex simultaneously, no matter how the pebbles are ...
متن کاملOptimal pebbling in products of graphs
We prove a generalization of Graham’s Conjecture for optimal pebbling with arbitrary sets of target distributions. We provide bounds on optimal pebbling numbers of products of complete graphs and explicitly find optimal t-pebbling numbers for specific such products. We obtain bounds on optimal pebbling numbers of powers of the cycle C5. Finally, we present explicit distributions which provide a...
متن کاملDomination Cover Pebbling: Structural Results
This paper continues the results of “Domination Cover Pebbling: Graph Families.” An almost sharp bound for the domination cover pebbling (DCP) number, ψ(G), for graphs G with specified diameter has been computed. For graphs of diameter two, a bound for the ratio between λ(G), the cover pebbling number of G, and ψ(G) has been computed. A variant of domination cover pebbling, called subversion DC...
متن کاملThe Cover Pebbling Theorem
For any configuration of pebbles on the nodes of a graph, a pebbling move replaces two pebbles on one node by one pebble on an adjacent node. A cover pebbling is a move sequence ending with no empty nodes. The number of pebbles needed for a cover pebbling starting with all pebbles on one node is trivial to compute and it was conjectured that the maximum of these simple cover pebbling numbers is...
متن کاملThe Pi-Pebbling Function
Recent research in graph pebbling has introduced the notion of a cover pebbling number. Along this same idea, we develop a more general pebbling function π P (G). This measures the minimum number of pebbles needed to guarantee that any distribution of them on G can be transformed via pebbling moves to a distribution with pebbles on t target vertices. Furthermore, the P part of the function give...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004